FIITJEE MEDICAL TEST SAMPLE PAPER For students presently in Class – 9

Biology, Physics & Chemistry – PAPER - 2

Time Duration: 3 Hours

Maximum Marks: 540

Instructions

Caution: Class, Paper, Code as given above MUST be correctly marked in the answer OMR sheet before attempting the paper. Wrong Class, Paper or Code will give wrong results.

1. This Question Paper contains only **3 Sections**. All questions will be Multiple Choice with single correct option out of four choices. The marking scheme is as per the table given below:

	Section Subject	•		e for each questions	
		Subject	Question No.	Correct Answer	Wrong Answer
	Section – I	Biology	Q.NO: 1 to 45	+4	-1
	Section - II	Physics	Q.NO: 1 to 45	+4	-1
	Section - III	Chemistry	Q.NO: 1 to 45	+4	-1

- 2. Answers have to be marked on the OMR sheet. The Question Paper contains blank spaces for your rough work. No additional sheets will be provided for rough work.
- 3. Blank papers, clip boards, log tables, slide rule, calculator, cellular phones, pagers and electronic devices, in any form, are not allowed.
- 4. Before attempting paper write your Registration Number, Name and Test Centre in the space provided at the bottom of this sheet
 - **Note:** Please check this Question Paper contains all **135** questions. If not so, exchange for the correct Question Paper.

Section - I

Straight Objective Type

Biology contains 45 multiple choice questions numbered 1 to 45. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE** is correct.

1.			(B) Presence of food vacuole(D) Catalytic activity		
2.	The oxygen and carbon dioxide cros (A) Diffusion (C) Absorption	sses the plasma membra	ane by the process of (B) Osmosis (D) All of the above		
3.	A cell without a cell wall is termed as (A) Tonoplast	s (B) Protoplast	(C) Symplast	(D) None of these	
4.	The function of the centrosome is (A) Formation of spindle fibres	(B) Osmoregulation	(C) Secretion	(D) Protein synthesis	
5.	 Select one which is not true for ribosome (A) Attached to Smooth endoplasmic reticulum (C) Proteins produced by ribosomes can act as enzyme 		(B) Attached to Rough endoplasmic reticulum(D) Have role in protein synthesis		
6.	Which one of these is not a eukaryo (A) Euglena	te? (B) Anabaena	(C) Spirogyra	(D) Agaricus	
7.	Different cells have different sizes. A correct option among the followings	Arrange the following cel	ls in an ascending order	of their size. Choose the	
	i. Mycoplasma (A) i, iv, iii & ii	ii. Ostrich eggs (B) i, ii, iii & iv	iii. Human RBC (C) ii, i, iii & iv	iv. Bacteria (D) iii, ii, i & iv	
8.	Which of the following statements is (A) It is present in both plant and an (B) Lipid is present as a bilayer in it (C) Proteins are present integrated a (D) Carbohydrate is never found in i	imal cell as well as loosely associ		r	
9.	 Which of the following statements at (A) Smooth Endoplasmic Reticulum (B) It is also called the control center (C) It processes carbohydrates. (D) It modifies chemicals that are to: (A) (a), (b) and (c) 	makes lipids. r of the cell.	ic Reticulum? (C) only (a) and (d)	(D) all are correct	

Page – 2				CLASS 9 TO 10 S	AMPLE PAPER 2 (BPC)
10. Plasmodesmata are located in narro (A) Cell walls	ow areas of (B) Protop			(C) Cellulose	(D) Nuclei
11. Condensation of chromosomes occ (A) Prophase I			(C) Anaphase	(D) Metaphase	
12. The replication of nuclear DNA occu $(A) G_1$ phase	urs in (B) G₂ pha	se		(C) S phase	(D) M phase
13. Tendon and ligament are examples(A) connective tissue	of (B) Epithel	lial tissu	he	(C) Muscular tissue	(D) Nervous tissue
14. Squamous epithelium occurs in inne (A) Kidney	er lining of (B) Pancre	eatic du	ct	(C) Lung alveoli	(D) Heart
15. Plasma is the part of the blood (A) Solid	d after remo (B) hard	val of c	orpus	cles. (C) fluid	(D) jelly like
16. The study of tissues is known as(A) Physiology	(B) Ecolog	У		(C) Histology	(D) Anatomy
17. Smooth muscles are(A) Involuntary, cylindrical ,striated(C) Involuntary, spindle shaped ,nor	n-striated			(B) Voluntary ,spindle (D) Voluntary, multinuc	shaped, uninucleated cleated, spindle shaped
18. Match the columns (A) Cartilage (B) Bone (C) Muscle fibre (D) Neuron (A) A-S,B-R,C-Q,D-P	(B) A-R,B-	(P) (Q) (R) (S)	Sarc Chor Oste	emma olemma ndrocytes ocytes (C) A-R,B-S,C-Q,D-P	(D) A-Q,B-P,C-S,D-R
19. Parenchyma is a type of (A) Simple tissue	(B) Comple			(C) Xylem	(D) Phloem
20. The husk of the coconut is made up (A) Collenchyma	o of ? (B) Sclerer	nchyma	a	(C) Apical meristem	(D) Intercalary meristem
Space for Rough Work					

Pag	ge – 3		CLASS 9 TO 10 SA	MPLE PAPER 2 (BPC)	
21.	Which meristem is present at the ba (A) Apical meristem	se of the leaves or intern (B) Cambium	nodes on twigs? (C) Intercalary meristen	n(D) Epidermis	
22.	Which is not a function of epidermis (A) Protection from adverse conditio (C) Conduction of water		(B) Gaseous exchange (D)Transpiration		
23.	If the tip of sugarcane plant is remove presence of (A) cambium	ved from the field, even t (B) apical meristem	hen it keeps on growing (C) lateral meristem	in length. It is due to the (D) intercalary meristem	
24.	Permanent tissue takes a fixed sha (A) Totipotent	pe, size and function afte (B) Differentiated	er its formation. So we ca (C) Reticulated	all them (D) cloned	
25.	Tissues in tendrils of a climber plan (A) Parenchyma	t and leaf stalk of a plant (B) Collenchyma	are examples of which t (C) Vascular	issue? (D) Bark	
26.	Which of the following is a green ho (A) Nitrogen dioxide	use gas? (B) Sulphur dioxide	(C) Carbon dioxide	(D) Carbon monoxide	
27.	Synthetic material/ chemical which o (A) CFCs	depleted Ozone layer is (B) CFLs	(C) CO ₂	(D) None of above	
28.	Oxygen is harmful for (A) ferns	(B) Rhizobium	(C) chara	(D) mango tree	
29.	Major source of mineral in soil is the (A) parent rock from which soil is for (C) animals		(B) plants (D) bacteria		
30.	Who among the following was assoc (A) Sundarlal Bahuguna	ciated with chipko mover (B) Nanditha Devi	nent? (C) Baba Amte	(D) All of the above	
31.	Which of the following was started Kerala, India from being flooded by (A) Chipko Movement (C) Appiko Movement		vergreen tropical forest (B) Silent Valley Mover (D) Jungle Bachao And	nent	
32.	Corbett National park is famous for? (A) Neel Gai	(B) Snakes	(C) Rhinoceros	(D) Tigers	
	Space for Rough Work				

33.	Which of the following organisms is (A) Cyanobacteria-primary produce (C) Zooplankton- primary producer		s trophic level? (B) Honey bee- primary consumer (D) Eagle-teritary consumer		
34.			(B) Land slower than th (D) Neither land nor wa		
35.			a? (B) Typhoid and smallpox (D) Herpes and influenza		
36.	The chemical test that is used for di (A) ELISA-Test	agnosis of typhoid is: (B) ESR – Test	(C) PCR – Test	(D) Widal-Test	
37.	 7. The sporozoites that cause infection when a female Anophe (A) Liver of human (C) salivary glands of mosquito 		les mosquito bites a human being are formed in: (B) RBCs of mosquito (D) intestine of human		
38.	Penicillin is a drug that can (A) Interfere in the biological pathwa (C) Both (a) and (b)	ay of bacteria	(B) An antibiotic that can kill bacteria(D) None of the above		
39.	You are aware of Polio Eradication (A) vaccination kills the polio causin (C) it creates immunity in the body			because If polio causing organism	
40.	 0. Consider the following statements. (a) Leucocytes help in cloting of blood. (b) Platelet flight diseases (c) Lymph transport nutrients to the heart Which of the above are false? (A) A and B only (B) B and C only 		(C) All of the above	(D) A & C only	

Page – 5		CLASS 9 TO 10 S	AMPLE PAPER 2 (BPC)	
41. Itai-itai disease was caused by pois (A) Cadmium	oning of (B) Manganese	(C) Mercury	(D) Zinc	
42. Swollen, spongy and purplish gums disease?	s that are prone to bleed	ing are the symptoms of	which of the following	
(A) Xerophthalmia	(B) Beri-beri	(C) Scurvy	(D) Rickets	
43. Black death is seen in which of the (A) Malaria	following disease? (B) Leprosy	(C) Rabies	(D) Plague	
44. Stiffness of the neck, jaw, and othe	r muscles, often accomp	panied by a sneering, gri	nning expression are the	
symptoms of (A) Diphtheria	(B) Tetanus	(C) Pertusis	(D) Cholera	
 45. Making anti-viral drugs is more difficult than making anti-bacterial medicines because (A) viruses make use of host machinery (B) viruses are on the border line of living and non-living (C) viruses have very few biochemical mechanisms of their own (D) viruses have a protein coat 				
Space for Rough Work				

	Straight Objecti	ve Туре			
ysics contains 45 multiple choice qu t of which ONLY ONE is correct.	estions numbered 1 to	45. Each question has	4 choices (A), (B), (C) and (D),		
A rabbit ran for 2 minutes at a speed of 7.5km/h, slept for 56 minutes and again ran for 2 minutes at a speed of 7.5km/h, Find the average speed of rabbit is					
(A) 5km/h	(B) 0.5km/h	(C) 1km/h	(D) 10km/h		
A body whose speed is constant (A) Must be accelerated (C) Has a constant velocity		(B) Might be acceler (D) Cannot be accel			
Anand leaves his house at 8:30 A.M for his school. The school is 2km away and classes start at 9:00 A.M. If he walks at a speed of 3km/h for the first kilometre, at what speed should he walk the second kilometer to reach just in time?					
(A) 6km/h	(B) 5km/h	(C) 3km/h	(D) 10km/h		
A truck travelling at 54km/h is slow (A) 0.5m/s ²	down to 36km/h in 10s (B) -0.5m/s ²	ec. Find the retardation (C) 2.5m/s ²	(D) -2.5m/s ²		
		urs to cover a distance	of 500km. Find the ratio of its		
(A) 4:5	(B) 5:4	(C) 9:5	(D) 5:9		
			st. If it travels a distance D_1 in		
(A) $D_2 = D_1$	(B) D ₂ =2D ₁	(C) D ₂ =3D ₁	(D) $D_2 = 4D_1$		
		d penetrates it up to a	a distance of 6 cm. Find the		
(A) 3333.3m/s ²	(B) 333.3m/s ²	(C) 33.3m/s ²	(D) none of the above		
acceleration of 10 ³ m/s ² in the dire	ection of initial velocity.	s into a uniform electric How much distance will	c field and acquires a uniform the electron cover in the time		
(A) 53.7 x 10^3 m		(C) 35.7 x 10 ³ m	(D) 37.5 x 10 ³ m		
	of which ONLY ONE is correct. A rabbit ran for 2 minutes at a spe 7.5km/h. Find the average speed of (A) 5km/h A body whose speed is constant (A) Must be accelerated (C) Has a constant velocity Anand leaves his house at 8:30 A. walks at a speed of 3km/h for the just in time? (A) 6km/h A truck travelling at 54km/h is slow (A) 0.5m/s ² The maximum speed of a train is average speed to maximum speed (A) 4:5 A particle experiences constant ac the first 10 seconds and distance D (A) D ₂ =D ₁ A bullet hits a Sand box with a deceleration of the bullet in the sar (A) 3333.3m/s ² An electron moving with a velocit acceleration of 10^3 m/s^2 in the direct by which its velocity will be doubles	ysics contains 45 multiple choice questions numbered 1 to of which ONLY ONE is correct. A rabbit ran for 2 minutes at a speed of 7.5km/h, slept for 7.5km/h. Find the average speed of rabbit is (A) 5km/h (B) 0.5km/h A body whose speed is constant (A) Must be accelerated (C) Has a constant velocity Anand leaves his house at 8:30 A.M for his school. The se walks at a speed of 3km/h for the first kilometre, at what just in time? (A) 6km/h (B) 5km/h A truck travelling at 54km/h is slow down to 36km/h in 10s (A) 0.5m/s ² (B) -0.5m/s ² The maximum speed of a train is 90km/h. It takes 10 hot average speed to maximum speed. (A) 4:5 (B) 5:4 A particle experiences constant acceleration for 20 second the first 10 seconds and distance D ₂ in the next 10 second (A) D ₂ =D ₁ (B) D ₂ =2D ₁ A bullet hits a Sand box with a velocity of 20m/s and deceleration of the bullet in the sand box. (A) 333.3m/s ² (B) 333.3m/s ² An electron moving with a velocity of 5 x 10 ³ m/s enters acceleration of 10 ³ m/s ² in the direction of initial velocity. by which its velocity will be doubles?	A rabbit ran for 2 minutes at a speed of 7.5km/h, slept for 56 minutes and again r 7.5km/h. Find the average speed of rabbit is (A) 5km/h (B) 0.5km/h (C) 1km/h A body whose speed is constant (A) Must be accelerated (B) Might be acceler (C) Has a constant velocity (D) Cannot be acceler (C) Has a constant velocity (D) Cannot be acceler (Anand leaves his house at 8:30 A.M for his school. The school is 2km away and walks at a speed of 3km/h for the first kilometre, at what speed should he walk just in time? (A) 6km/h (B) 5km/h (C) 3km/h A truck travelling at 54km/h is slow down to 36km/h in 10sec. Find the retardation (A) 0.5m/s ² (C) 2.5m/s ² The maximum speed of a train is 90km/h. It takes 10 hours to cover a distance average speed to maximum speed. (A) 4:5 (B) 5:4 (C) 9:5 A particle experiences constant acceleration for 20 seconds after starting from re the first 10 seconds and distance D ₂ in the next 10 seconds then (A) D ₂ =D ₁ (B) D ₂ =2D ₁ (C) D ₂ =3D ₁ A bullet hits a Sand box with a velocity of 20m/s and penetrates it up to a deceleration of the bullet in the sand box. (A) 3333.3m/s ² (C) 33.3m/s ² An electron moving with a velocity of 5 x 10 ³ m/s enters into a uniform electric acceleration of 10 ³ m/s ² in the direction of initial velocity. How much distance will by which its velocity will be doubles?		

Regional Head Quarters: FIITJEE TOWERS, No.3, First Lane, (Next to Apex Plaza), Nungambakkam High Road, Nungambakkam, Chennai – 600 034.

Section - II

Physics

Page – 7			CLASS 9 TO 10 SA	AMPLE PAPER 2 (BPC)
	ss of 50kg was moving with a v eed to 50m/s after some time. V 6.5m			
	l of 150g mass moves with 12n second. What was the force ap 40N			m/s after a small duration of (D) 160N
11. If you (A) 2r	apply a net force of 3N on 0.1 n/s ²	kg box, what is the acce (B) 30m/s ²	eleration of the box (C) 10m/s ²	(D) None of these
12. If a ne 80m/s (A) 0	-	pplied on 400g object at (B) 2.23 s	t rest, how long will it tak (C) 3.47 s	e to raise its velocity to (D) 4.57 s
	pject of mass 10g is sliding w red to keep the object moving v N			horizontal table. The force (D) 20 N
	ket ball of mass 0.20kg is mov able to stop the ball is 0.10s? 4N	ring with a velocity of 1.2 (B) 0.6N	2m/s. Find the average for (C) 0.3N	orce applied by the player if (D) 0.9N
2m/s 1.67n	objects of masses of 100g an and 1m/s respectively. The n/s.Determine the velocity of th 56m/s	ey collide and after c		
16. Action (A) Al	n & reaction Iways exist in pairs Iways act in opposite directions		(B) Are equal in magnit(D) All the above are tr	ude
(Å) ot	son sitting in an open car movi utside the car the car to the side of the perso		hrows a ball vertically up (B) in the car ahead of (D) exactly in the hand	the person

18.	 B. There is gravitational force between a mosquito flying in air and the huge earth. Which of the following is correct? (A) The magnitude of force exerted by the mosquito on the earth is less than that exerted by the earth (B) The magnitude of force exerted by the earth on the mosquito is larger than that of exerted by the mosquito (C) Both (A) and (B) above are correct (D) The force exerted by the mosquito on the earth has the same magnitude as the force exerted by the huge 					
	earth on the mosquito					
19.	If the atmospheric pressure is Pa, the atmosphere is	hen pressure P at depth	h below the surface of a	liquid of density ρ open to		
	(A) $P_a - \rho gh/2$	(B) $P_a - \rho gh$	(C) P _a	(D) P _a + ρgh		
20.	A bullet of mass 20 g enters a san average force exerted by the sand b		0 m/s and comes to res	t in 2 s. The magnitude of		
	(A) 10 N	(B) 100N	(C) 1 N	(D) 1000 N		
21.	The pressure on a swimmer 20 m b					
	(A) 1.0 atm	(B) 2.0 atm	(C) 2.5 atm	(D) 3.0 atm		
22.	22. Newton's first law of motion is also known as (A) Newton's law of gravitation(B) Law of inertia (D) Galileo's law of gravitation					
23.	The height above the surface of the	earth at which the value	of 'g' become $\frac{1}{4}$ of its va	alue on the surface of earth		
	is (given R = 6400km) (A) 6400km	(B) 3200km	(C) 12800km	(D) 1600km		
24.	10 one rupee coins are put on to magnitude of normal reaction of the (A) 0.1 N					
25.	When a person is walking on ground (A) he applies a force on the ground (C) No force is applied by the person	l	(B) the ground exerts a (D) Both (a) and (b)	force on him		

Page – 8

26. The weight of a body is	20 kg. This weight is equal to		
(A) 1960 N	(B) 196 J	(C) 196×10 ⁵ dyne	(D) 19.6 N

27. A tall cylinder is filled with viscous oil. A round pebble is dropped from the top with zero initial velocity. From the plot shown in Figure, indicate the one that represents the velocity (v) of the pebble as a function of time (t).

33. A hammer of mass 5 kg hits a surface at a speed of 3 m/s and comes to rest in 0.2 s. The impulse imparted on the hammer has a magnitude of (B) 75 kg $\frac{m}{s^2}$ (C) 15 kg $\frac{m}{s}$ (D) 15 kg $\frac{m}{s^2}$ (A) 75 kg $\frac{m}{s}$ 34. A big stone and small are dropped from the roof of the house at the same time. Which one will reach the around first? (A) Big stone (B) small stone (D) not able to determine with the given data (C) both at the same time 35. The frictional force acting on the block is $(g = 10 \text{ m/s}^2)$ = 50 (A) 800 N towards left (B) 800 N towards right (C) 50 N towards right (D) 50 N towards left 36. The weight of the body at a certain place is 30 N. The acceleration due to gravity at that point is 10 m/s². Find out the mass and weight of the object at the place where acceleration due to gravity is zero? (A) 3 kg, 0 N (B) 3 kg, 30 N (C) 3 kg, 3 N (D) None of these 37. An object is thrown vertically upwards and rises to a height of 10 m. Calculate the velocity with which the object was thrown upwards? Take $g = 9.8 \text{ m/s}^2$ (A) 14 m/s (B) 16 m/s (C) 10 m/s (D) 9.8 m/s 38. A bullet of mass 15 g has a speed of 400 m/s. The bullet strikes a thick target and is brought to rest in 2 cm. a. What is its kinetic energy? b. calculate the average net force acting on the bullet. c. What happens to kinetic energy originally in the bullet? (A) a. 1000 J, b. 6×10^5 N, c. converted to heat energy (B) a. 1200 J, b. 6×10^4 N, c. converted to heat energy (C) a. 1200 J, b. 5×10^4 N, c. converted to heat energy (D) a. 1300 J, b. 6×10^5 N, c. converted to potential energy 39. Two blocks of masses 2 kg & 1 kg are in contact with each other on a 2 kg horizontal frictionless table. When a horizontal force of 3 N is applied to the block of mass 1 kg, the value of the force of contact between the two blocks is (A) 4 N (B) 3 N (C) 2 N (D) 1 N

40.	A solid weighs 50 gf in air (where gf a. the upthrust b. the volume of the solid c. the relative density of the solid		when completely imn	nersed in water. Calculate
	Given density of water = 1000 kg/m^3 (A) a .0698 N, b. 7 cm ³ , c. 8.33 gm (C) a .0568 N, b. 5 cm ³ , c. 9.33 gm	/ cm ³	(B) a .0588 N, b. 6 (D) a .0588 N, b. 6	cm ³ , c. 8.33 gm/ cm ³ cm ³ , c. 8.53 gm/ cm ²
41.	A horse exert a force of 200 N to p level road, then find the power of ho (A) 1.68 h.p			with velocity 36 kmh ⁻¹ on the (D) 2.28 h.p
42.	Three blocks of masses m_1 , m_2 , shown figure find $T_1 : T_2 = ?$ ($T_1 & T_2 = ?$) in the strings) (A) 3 : 5 (C) 3 : 2		3 kg T_1 2 kg	$\frac{T_2}{1 \text{ kg}} \longrightarrow F = 10 \text{ N}$
43.	Calculate the kinetic energy of a car the velocity of car doubles? (A) 100 KJ	of mass 500 kg moving (B) 200 KJ	with a velocity of 36 k (C) 150 KJ	xm/h. Find the kinetic energy if (D) 110 KJ
44.	The weight of the man on earth is 15 a) Find the mass of the man on plan b) Find the acceleration due to gravi (A) a. 15 kg, b. 1.66 m/s^2 (C) a. 15 kg, b. 2.66 m/s^2	et	et is 25 N. (Take g = ⁻ (B) a. 13 kg, b. 1.66 (D) a. 14 kg, b. 1.36	
45.	The pressure exerted by a cube of s (A) 0.007 N	ide 0.03 m on a surface (B) 0.009 N	is 10 Pa. Calculate th (C) 0.010 N	e thrust exerted by the cube? (D) 0.005 N

CLASS 9 TO	0 10 SAMPLE PAPE	2 (BPC)
------------	------------------	---------

Section - III

Che	emistr	v
	ะแมน	y

Straight Objective Type

	emistry contains 45 multiple choice of , out of which ONLY ONE is correct.	questions numbered 1 to	45.	. Each question has	4 choices (A), (B), (C) and	
1.	On heating liquids, the temperature (A) Particles gains energy (C) Intermolecular spaces between			Intermolecular attract All of the above	stion decreases	
2.	From Brownian motion we can say matter is (A) Made up of tiny particles (C) Particles of matter attracts		(B) Consists of particles moving constantly(D) All of the above			
3.	Latent heat of fusion of ice is? (A) 80 cal/g	(B) 334 J/g	(C)	540 cal/g	(D) A and B	
4.	Which of the following has the highe	est mass?				
	(A) 1 g-atom of C		(B)	$\frac{1}{2}$ mole of CH ₄		
	(C) 10 mL of water		(D) 3.011×10^{23} atoms of oxygen			
5.	 Which of the following is not a heterogeneous mixture? (A) Salt + pepper (C) Hydrogen gas + platinum metal 			Water + sand None		
6.	Which of the following is amorphous (A) Sulphur	solid? (B) Rubber	(C)	A and B	(D) None of these	
7.	6.022×10^{22} molecules of $N_{_2}$ at NTF (A) 22.4 litres	P will occupy a volume of (B) 2.24 litres		6.02 litres	(D) 6.02 mL	
8.	Melting is the reverse process of (A) vaporization	(B) Boiling	(C)	Freezing	(D) None	
9.	When the liquid starts boiling, the temperature of the liquid (A) Increases continuously (C) Remains constant			Decreases continuo none	usly	
10.	Evaporation leads to (A) Heating	(B) Cooling	(C)	Unaltered	(D) None of these	
	Space for Rough Work					

Space for Rough Work

Regional Head Quarters: flitJEC TOWERS, No.3, First Lane, (Next to Apex Plaza), Nungambakkam High Road, Nungambakkam, Chennai – 600 034.

11.	Mercury is used as a thermometric (A) Lowest latent heat of fusion (C) High specific heat among all the		(B) Lowest specific hea (D) Can't say	t among all the liquids
12.	A sample contains two substances (A) a compound (C) an element	and has uniform properti	es. The sample is (B) a heterogeneous m (D) a homogeneous miz	
13.	A mixture of methyl alcohol and ace (A) fractional distillation	tone can be separated b (B) filtration	y (C) steam distillation	(D) sublimation
14.	Physical properties of a mixture (A) Vary with the amount of substar (C) Remain constant irrespective of		(B) Depend on the volu (D) Vary depending upo	me of the substance on its components
15.	Compounds (A) Are the same as mixtures (B) Can be separated by their physi (C) Contain only one type of elemen (D) Are different kind of atoms chen	nt	ch other	
16.	Gold and copper are mixed and use (A) heterogeneous mixture (C) colloid	ed in ornaments. It is an e	example of (B) homogeneous mixtu (D) suspension	ure
17.	Filtration can be used to separate (A) solids from solids (C) liquids from liquids		(B) liquids from solids (D) liquids from gases	
18.	One common method used to separ (A) filtration	rate dyes is (B) distillation	(C) chromatography	(D) conductivity
19.	Magnetism is most beneficial for se (A) gases and non-metallic liquids (C) non-metallic solids and solids su	-	(B) magnetic solids and (D) non-magnetic solids	l solids such as sulfur s from non-magnetic liquids
20.	Which of the following substance is (A) smoke	not a colloid? (B) air	(C) foam	(D) fog
21.	The size of solute particles in a colle $(A) 10^{-7}$ to 10^{-5} nm	bid is (B)10 ⁻⁷ to 10 ⁻⁵ mm	$(C)10^{-7}$ to 10^{-5} cm	(D)10 ⁻⁷ to 10 ⁻⁵ m

22. Which of the following is a chemic (A) Melting of glass(C) Cooking of food			ls gs and sand	
23. The composition of a constituents(A) molecules	can be varied in (B) mixtures	(C) elements	(D) none	
24. Which of the following has liquid a (A) Fog	s a dispersed medium? (B) Shampoo	(C) curd	(D) Cheese	
25. Which is an emulsion? (A) Boot polish	(B) Lipstick	(C) Milk	(D) All of these	
26. X grams of CaCO ₃ was complete	ly burnt in air. The mass	of the solid residue form	ned is 28grams. What is the	
value of x in grams (A) 44	(B) 200	(C) 150	(D) 50	
27. Among the following, the group ob (A) CH_4 , CO_2 , H_2O	eys law of multiple propo (B) N ₂ O,NO,N ₂ O ₃	rtions (C) H ₂ S,CH ₄ ,NaCl	(D) CO ₂ ,CO,H ₂ O	
28. One litre of a gas at STP weighs 1 (A) C_2H_2	.16 g. It can possibly be (B) CO	(C) O ₂	(D) CH ₄	
 29. The red pigment in blood contains 0.32% of iron by weight. The molar weight of the pigment is 70,000. The number of iron atoms in each molecule of the pigment is: (Atomic weight of iron is 56g/mole) (A) 1 (B) 2 (C) 3 (D) 4 				
30. The total number of protons in 10 (A) 3.0115×10^{24}	gm of calcium carbonate (B) 1.0507×10^{24}	is (C) 2.0478 × 10 ²⁴	(D) 4.096 × 10 ²⁴	
31. The number of moles of $BaCO_3$ with (A) 0.5	nich contains 1.5 moles o (B) 1	f oxygen atoms is (C) 3	(D) 6.02 x 10 ²³	
 32. If two compounds have the same empirical formula but different molecular formula, they must have (A) Different percentage composition (B) Different molecular weights (C) Same viscosity (D) Same vapor density 				
33. Chemical equation is balanced ac(A) Multiple proportion(C) Conservation of mass	cording to the law of	(B) Reciprocal proport (D) Definite proportion		
	<u> </u>			

	J			· - /
34	. 6.022 X 10 ²⁰ molecules of urea are (A) 0.001M	present in 100 ml of its s (B) 0.1M	colution. The concentration (C) 0.02M	on of urea solution is (D) 0.01M
35	. Density of a 2.05M solution of aceti (A) 1.14	c acid in water is 1.02g/r (B) 3.28	nl. the molality of the solu (C) 2.28	ution is mol/Kg (D) 0.44
36	. The ratio of number of atoms in equ (A) 4 : 1	ual weights of CH₄ and S (B) 5 : 3	O ₂ is, (C) 20 : 3	(D) 1 : 1
37	. 448 ml of an equimolar mixture o weight of unknown gas (X) is, (A) 120	f nitrogen and an unkno (B) 60	own gas (X) weighs 1.2 (C) 50	8g at STP. The molecular (D) 100
38	. What weight of NH_3 contains same (A) 17g	()		(D) 34g
39	. How many of the given are mixture Soil, sugar solution, Na, Fe, Blood, (A) 3		(C) 4	(D) 5
40	. Colloids are (A) Heterogeneous, Shows Tyndall (C) Heterogeneous, does not show		(B) Homogeneous, sho (D) Homogeneous, doe	ws Tyndall effect es not show Tyndall effect
41	. Which of the following is a colloid? (A) sand water	(B) Brass	(C) lime water	(D) Smoke
42	. Which of the following is heterogen (i) colloid (A) Only (i)	eous (ii) True solution (B) (i), (ii)	(iii) Suspension (C) Only (iii)	(D) (i), (iii)
43	. The latent heat of vapourisation of v (A) 80 cal/g	water is? (B) 533 cal/g	(C) 0.5 cal/g	(D) 1 cal/g
44	. Which of the following is anisotropic (A) Graphite	c? (B) glass	(C) Rubber	(D) none
45	. For the reaction $A + 2B \rightarrow C$, 5 mo (A) 5 moles of C	les of A and 8 moles of E (B) 4 moles of C	3 will produce (C) 8 moles of C	(D) 13 moles of C
		Space for Rough	Work	

CLASS 9 TO 10 SAMPLE PAPER 2 (BPC)

Page - 15

	ANSWER KEY Section - I Biology				
1.C 6.B 11.A 16.C 21.C 26.C 31.B 36.D 41.A	2.A 7.A 12.C 17.C 22.C 27.A 32.D 37.C 42.C	3.B 8.D 13.A 18.C 23.D 28.B 33.C 38.C 43.D	4.A 9.B 14.C 19.A 24.B 29.A 34.A 39.C 44.B	5.A 10.A 15.C 20.B 25.B 30.A 35.A 40.A 45.C	
	Section - II				
1.B 6.C 11.B 16.D 21.D 26.C 31.A 36.A 41.B	2.B 7.A 12.D 17.D 22.B 27.C 32.A 37.A 42.A	Phys 3.A 8.D 13.A 18.D 23.A 28.C 33.C 38.B 43.A	4.A 9.B 14.A 19.D 24.D 29.A 34.C 39.C 44.A	5.D 10.C 15.D 20.C 25.D 30.B 35.D 40.B 45.B	
		Section			
1.D 6.B 11.B 16.B 21.C 26.D 31.A 36.C 41.D	2.B 7.D 12. D 17.B 22.C 27.B 32.B 37.D 42.D	Chem 3.D 8.C 13.A 18.C 23.B 28.A 33.C 38.A 43.B	4.A 9. C 14.D 19. B 24.B 29.D 34.D 39.D 44.A	5.D 10.B 15.D 20.B 25.C 30.A 35.C 40.A 45.B	